Time-gated microscopic imaging and
spectroscopy in medical diagnosis and

photobiology

Herbert Schneckenburger, MEMBER SPIE
Fachhochschule Aalen

Fachbereich Optoelektronik
Heinrich-Rieger-Str. 22

D-73430 Aalen, Germany

Abstract. An experimental setup was developed for time-gated (nano-
second) fluorescence spectroscopy and imaging of microscopic sam-
ples. This makes it possible to depict individual components of complex
fluorophores and to measure specific metabolites on the basis of their
decay times. The field of applications includes the selective detection of

and intrinsic fluorophores and of photosensitizers in single cells, skin, and
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1 Introduction

As has been reported previously,'? various components of
complex fluorophores in cells and tissues can be differen-
tiated on the basis of their decay times. This fact was used
in fluorescence diagnosis, in particular to discriminate the
emission of tumor-specific markers or photosensitizers
against the autofluorescence of the tissue.>™ After pulsed
laser excitation the fluorescence was measured in a certain
time gate that was adapted to the lifetime of the relevant
fluorophore and allowed for suppression of shorter lived or
longer lived components. For a broader field of applications
a microscopic setup was developed, where the detection of
fluorescence spectra and images is combined. These appli-
cations include the detection of individual components of
complex photosensitizers in cells and tissues, first steps of
diagnosis of skin and teeth (caries) on the basis of specific
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teeth, as well as of photosynthetic pigments in plants under various
stress conditions.

Subject terms: time-resolved fluorescence imaging; microspectrofluorometry;
photosensitizers; photosynthesis.
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fluorophores, and measurements of defects to the photo-
synthetic apparatus of plants.

2 Materials and Methods

2.1 Materials

Photosan 3 (PS 3)—a complex and highly aggregated por-
phyrin photosensitizer with some tumor-localizing
properties' (obtained from Seehof Laboratorium, Wessel-
burener Koog, Germany)—was studied in an aqueous and
methanol solution (100 to 300 pg/ml), as well as in single
RR 1022 epithelial cells after 3 or 24 h of incubation (5 g/
ml culture medium). In addition, PS 3 and protoporphyrin—
as produced endogenously from aminolaevulinic acid
(ALA)—were measured in the chick chorioallantoic mem-
brane (CAM)’ and in human skin after laser ablation of the
stratum corneum. ALA-induced photosensitization has been
reported for the epidermis, as well as for basal cell and squa-
mous cell carcinoma, which originate from malignant trans-
formation of epidermal cells.® Therefore, topical application
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lived monomers are located in the plasma membrane, whose
contribution to the fluorescence signal at 0 to 5 ns is com-
paratively low. The nuclear membrane, mitochondria, and
(in some cases) the cell nucleus were identified as further
sites of monomer accumulation. Since monomeric porphyrins
were reported to have the best photosensitizing properties, '
these sites, as well as the plasma membrane, are supposed
to be the main intracellular targets of photosensitization.

The method of time-gated photodiagnosis has so far been
applied to the skin and teeth of individual patients. In the
first case an ALA-containing cream was applied to part of
an arm, where within small spots the stratum corneum had
been ablated by an Er:YAG laser, such that ALA could be
taken up by the epidermal cells. This may reflect a situation
similar to a skin tumor (basal cell or squamous cell carci-
noma) that selectively takes up ALA after topical application.
When detecting fluorescence from the ablated spots and their
surroundings, the emission peak of ALA-induced protopor-
phyrin (around 635 to 640 nm) can be clearly distinguished
from the autofluorescence of the tissue. The ALA-induced
peak, however, becomes most prominent if a ‘‘late’” time
gate (e.g., 15 to 20 ns after the laser pulse) is selected (Fig. 5).
Figure 6 shows the time-integrated and the time-gated (20 to
45 ns) fluorescence images detected at A>590 nm. Whereas
Fig. 6(a) shows the autofluorescence from the entire illu-
minated part, in Fig. 6(b) only the ALA-induced fluorescence
from the ablated spot is obtained. This, again, proves the
advantage of the time-gated detection method.

Figure 7 shows the fluorescence decay kinetics from a
carious and a noncarious region of a human tooth. The in-
tegral emission from a healthy part of a tooth is often stronger
than that of a carious part. Caries fluorescence, however,
shows characteristic decay times of porphyrins (see earlier:
PS 3) and may be due to porphyrin-producing bacteria. Di-
agnostics of caries may become possible if a large time delay
(about 25 ns or more) between the exciting laser pulse and
fluorescence detection is selected. In Fig. 8 the time-
integrated and the time-gated (30 to 55 ns) images of the
incisors of a human patient with carious regions at the bottom
are demonstrated. Only in Fig. 8(b) does the caries become
evident.
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Fig. 5 Fluorescence spectra of human skin within different time
gates after topical application of ALA; excitation wavelength 532 nm.

3.2 Photosynthesis

As demonstrated recently,'® defects to the photosynthetic
apparatus of plants can be correlated with a ‘‘long-lived”’
component of chlorophyll fluorescence (=3 ns as compared
with 100 to 600 ps for the intact photosystems). The relative

(@)

(b)

Fig. 6 In vivo fluorescence of human skin after local ablation of the
stratum corneum: (a) time-integrated detection and (b) time-gated
detection at 20 to 45 ns; excitation wavelength 532/546 nm, emis-
sion measured at 590 to 800 nm, image size 2.5x 3 mm?2,
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Fig. 7 Fluorescence decay kinetics of a carious and a noncarious
region of a human tooth (picosecond excitation pulses at 390 nm;
emission measured at 590 to 800 nm).

intensity of this long-lived component (I3) in spruce needles
increased with the damage class of the tree (Fig. 9) and was
most pronounced in summer, when stress factors such as high
light doses, drought, and increased ozone concentrations be-
came prominent. Therefore, during one summer period in
1993, parts of a damaged spruce were exposed to reduced
sunlight (about 20%, using a wire mesh), whereas other parts
remained exposed to full sunlight. It became evident that
(only)-at reduced light conditions, I of second-year needles
decreased whereas the chlorophyll concentration increased
during the summer season. The fluorescence spectra of the
long-lived chlorophyll component was obtained within time
gates of 10 to 15 ns or 15 to 20 ns (Fig. 10) after the exciting
laser pulse. Only after exposure to full sunlight—but not to
reduced light—a prominent peak at 685 nm was found, which
can be attributed to photosystem II. Therefore, high light
doses mainly affect the function of this photosystem.

4 Conclusion

The applications of time-gated fluorescence spectroscopy and
imaging allow for (1) an in vivo differentiation of various
components of complex photosensitizers; (2) the detection
of ALA-induced protoporphyrin in human skin; (3) caries
detection from the autofluorescence of teeth; and (4) the lo-
calization of defects in the photosynthetic apparatus of plants
under high (environmental) light exposure. The method ap-
pears to be rather universal and may also be applied to quite
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Fig. 8 In vivo fluorescence of human teeth using (a) time-integrated
and (b) time-gated (30 to 55 ns) detection at 590 to 800 nm; exci-
tation wavelength 532 nm.

different topics such as time-resolved transillumination or
surface analysis in material science.
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Fig. 9 Chlorophyll fluorescence of about 10 needles of a healthy
(lower curve) and a declined (upper curve) spruce; excitation wave-
length 668 nm, emission measured at 690 to 800 nm.
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Fig. 10 Emission spectra of the long-lived component of chlorophyll
fluorescence as measured in a time gate of 15 to 20 ns for needles
with different light exposures (excitation wavelength 428 nm).
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